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Convolutional Neural Network-Based Synthesized
View Quality Enhancement for 3D Video Coding
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Abstract— The quality of synthesized view plays an important
role in the 3D video system. In this paper, to further improve
the coding efficiency, a convolutional neural network (CNN)-
based synthesized view quality enhancement method for 3D high
efficiency video coding (HEVC) is proposed. First, the distortion
elimination in synthesized view is formulated as an image
restoration task with the aim to reconstruct the latent distortion
free synthesized image. Second, the learned CNN models are
incorporated into 3D HEVC codec to improve the view synthesis
performance for both view synthesis optimization (VSO) and
the final synthesized view, where the geometric and compression
distortions are considered according to the specific characteristics
of synthesized view. Third, a new Lagrange multiplier in the
rate-distortion cost function is derived to adapt the CNN-based
VSO process to embrace a better 3D video coding performance.
Extensive experimental results show that the proposed scheme
can efficiently eliminate the artifacts in the synthesized image,
and reduce 25.9% and 11.7% bit rate in terms of peak-signal-
to-noise ratio and structural similarity index, which significantly
outperforms the state-of-the-art methods.

Index Terms— Convolutional neural network, view synthesis,
depth coding, 3D high efficiency video coding, Lagrange
multiplier.
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I. INTRODUCTION

RECENT years, the demand of the Three Dimen-
sional (3D) videos that are able to offer the immersion

feeling to the users has dramatically increased. In contrast
to the traditional 2D video, the multiple viewpoints dou-
ble or redouble the data volume in the 3D video system,
which result in vast proliferation of video data and bring great
challenges to transmission and storage. Fortunately, the rep-
resentation of Multi-view plus Depth (MVD) [1] provides an
efficient solution to 3D video system. With the help of depth
information, various virtual viewpoints between two reference
viewpoints can be generated by the technique of Depth Image
Based Rendering (DIBR) [2], [3], such that the video data
at the positions of the synthesized views are not required
to be transmitted. To further improve the coding efficiency,
the standard of 3D extensions of High Efficiency Video Coding
(3D HEVC) [1] has been issued [4], [5] for joint texture and
depth encoding. Due to the fact that depth map is not eventu-
ally watched by the users, the quality of the depth should
not be straightforwardly evaluated by the Mean Squared
Error (MSE) between the original and distorted versions.
Instead, the Synthesized View Distortion Change (SVDC) [6]
is measured and utilized in the Rate Distortion (RD) opti-
mization for depth coding, and the View Synthesis Optimiza-
tion (VSO) is performed to optimize the depth coding perfor-
mance [6]. Moreover, to reduce the computational complexity
from view synthesis operation while maintaining the cod-
ing efficiency simultaneously, the View Synthesis Distortion
(VSD) [7] is estimated based on the depth map fidelity and
texture characteristics.

To further improve the quality of depth as well as the
synthesized image, numerous algorithms have been proposed
in literatures, which can be divided into three categories.
The first category preprocesses the depth map because of its
imperfect quality. In particular, in the depth estimation or depth
camera acquisition process, inevitable artifacts may be gen-
erated, leading to distortions in the synthesized image even
without the compression of the depth map. In [8], a depth
video pre-processing algorithm was presented to enhance the
consistency with a low pass filter in the temporal domain.
Lee and Effendi [9] devised an adaptive smoothing filter for
the depth map according to the characteristics of the hole
region, where the geometric distortion and hole occurrence
were efficiently reduced. Methods in the second category
improve the view synthesis algorithm, and most of them focus
on the hole filling process. In [10], a view-spatial-temporal
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post-refinement method was proposed to fill the holes and
remove the boundary artifacts. Zhu and Li [11] provided
a fundamental analysis of holes generation mechanism, and
took advantages of the visible and invisible background
information together to perform hole filling. To exploit
the temporal correlation for hole filling in view synthesis,
Rahaman and Paul [12] proposed a new view synthesis
technique, where various models in the Gaussian Mixture
Modeling (GMM) were adopted to separate background and
foreground pixels. Then the missing part could be filled in
with the adaptive weighted average of the pixel values from
the associated models of the GMM and the warped images.
The final one is the synthesized image post-processing. Due to
the distortion introduced by texture and depth coding, various
types of distortions are mixed together in the synthesized
image. To eliminate these distortions, the wiener filter was
utilized for synthesized image quality improvement [13]. Fur-
thermore, an in-loop filter [14] was devised to minimize VSD
at the cost of transmitting extra filter parameters which are
utilized as supplementary information to improve the quality of
synthesized image. However, the existing approaches improve
the quality of the synthesized view by regarding the synthe-
sized view from pristine texture and depth as the reference.
This has largely ignored the distortions introduced in depth
generation and view synthesis.

Due to the substantial success of deep learning in signal
processing tasks, Convolutional Neural Network (CNN) has
been widely applied in the field of image restoration, espe-
cially for the compression distortion reduction. The compres-
sion Artifacts Reduction CNN (AR-CNN) [15] model was
firstly proposed to reduce the distortion in the compressed
image caused by JPEG compression, and approximately 1 dB
gain in terms of Peak-Signal-to-Noise Ratio (PSNR) had been
achieved. Zhang et al. [16] constructed a feed-forward CNN
for image denoising with blind Gaussian noise, where the
residual learning and batch normalization were both adopted
to accelerate the CNN training. Park and Kim [17] proposed an
in-loop filter using CNN to improve the coding efficiency and
subjective visual quality. Furthermore, the Variable-filter-size
Residue-learning CNN (VR-CNN) [18] was utilized to replace
the Sample Adaptive Offset (SAO) [19] for post-processing in
HEVC intra coding, which achieved 4.6% bit rate reduction
on average. In [20], the compression artifacts were removed
and the details of HEVC-compressed videos were enhanced
by a CNN equipped with a fully end-to-end feed forward
architecture. Basically, the above mentioned image denoising
and artifact reduction are all CNN based schemes, which have
been used for general Gaussian noise removal as well as
JPEG and HEVC compression artifacts elimination.

Due to the fact that the depth map is not perceived
eventually, a number of depth distortion evaluation schemes
have been proposed based on the VSD estimation. The
VSD was estimated as a function of depth coding error in [21],
which was further applied in the RD optimization process.
An analytical model in [22] was proposed to estimate the
virtual VSD caused by depth error, where the distance between
reference and virtual viewpoints were both taken into account.
A fine VSD estimation approach was presented in [23], where

the depth distortion as well as the texture gradient of the
co-located texture were considered. Besides the VSD esti-
mation, a virtual view PSNR estimation method was pre-
sented in [24]. In [25], through theoretical analysis and
practical view synthesis simulation, VSD was proved to be
non-monotonically related with the texture distortion while
monotonically related with the depth distortion. These deriva-
tions were utilized to improve the viewing performance of 3D
video. Tech et al. [26] proposed a partial depth image based
re-rendering scheme for VSD calculation, which was adopted
in the 3D HEVC reference software. Oh et al. [27] pre-
sented an efficient depth coding approach with the VSD,
which emphasized on the quality of synthesized image and
around 10% bit rate was reduced for overall multi-view texture
plus depth videos. In [28], a solution to the optimal depth
map down-sampling problem was derived, in which the target
was to minimize the depth-caused distortion in the synthesized
image. Liu et al. [29] provided a synthesized video quality
database with distortions from encoded texture and encoded
depth, then a full reference objective video quality assessment
metric was proposed. Based on the full reference synthesized
video quality assessment metric, an improved RD Optimiza-
tion (RDO) algorithm [30] was devised aiming at minimizing
the perceptual distortion of synthesized view under a given
bit rate budget. Generally speaking, these aforementioned
methods mainly focus on the distortion derivation of the
synthesized view. However, as the quality of the reference
synthesized view in VSO is imperfect due to the view synthesis
process, the 3D-HEVC coding performance can be further
boosted from the perspective of reference synthesized view
quality improvement.

In view of these limitations, we concentrate on improving
the quality of synthesized image based on the physically
acquired image, and propose a novel CNN based synthesized
view quality enhancement approach for 3D HEVC. The con-
tributions of this paper are listed as follows:

1) We formulate the distortion elimination in synthesized
image as an image restoration task, and the learned
CNN models based on the captured video at the syn-
thesized view are applied to improve the synthesized
view quality.

2) We incorporate the CNN models into 3D HEVC codec
to improve the view synthesis performance for both VSO
and final synthesized view.

3) The Lagrange multiplier in the RD cost function is
derived to adapt to the CNN based VSO process, which
further improves the 3D video coding performance.

The remainder of this paper is organized as follows. The
motivations are presented in Section II. Section III proposes
the scheme of CNN based synthesized view quality enhance-
ment in 3D HEVC and the CNN training is discussed in
detail in Section IV. Experimental results are demonstrated
in Section V. Section VI concludes this paper.

II. PROBLEMS AND MOTIVATIONS

In the MVD data format, the virtual viewpoints are typically
generated with DIBR. One of the key techniques in DIBR
is 3D warping [3], which maps the pixel p1 = {x1, y1, 1}T
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Fig. 1. Comparisons of the view 8 in Bookarrival sequence (enlarged for better visualization). (a) 1st frame of Bookarrival sequence; (b) The image captured
by camera at view 8; (c) The synthesized image from views 6, 10 with original texture and original depth; (d) The synthesized image from views 6, 10 with
original texture and encoded depth (Q Pd = 49); (e) The synthesized image from views 6, 10 with encoded texture and original depth (Q Pt = 45); (f) The
synthesized image from views 6, 10 with encoded texture and encoded depth {(Q Pt , Q Pd ) = (45, 49)}.

in reference viewpoint to the pixel p2 = {x2, y2, 1}T in the
virtual viewpoint,

s2p2 = s1A2R2R−1
1 A−1

1 p1 − A1R2R−1
1 t1 + A2t2, (1)

where s1 is the depth value of reference viewpoint at position
(x1,y1) and s2 is a scaling factor. Moreover, A1 and A2 are
intrinsic parameters, R1 and R2 are rotation matrices, and
t1 and t2 are translation vectors of the reference and virtual
cameras, respectively.

In essence, the parameters of A1, A2, R1, R2, t1 and t2
remain constants when the positions of the reference and
virtual viewpoints are fixed. Therefore, the distortion of the
synthesized view originates from both the depth and texture
degradations. In particular, if the quality of the depth map is
degraded, the location of the pixel p2 will be shifted, which
can be regarded as the warping distortion in view synthesis.
Moreover, the compression artifacts induced in the texture
image of the reference viewpoint will also directly influence
the quality of the synthesized image. Experiments of view
synthesis are further conducted to vividly prove the above
hypotheses. As shown in Fig. 1, the synthesized images under
different settings are illustrated, where (Q Pt , Q Pd ) indicate
the Quantization Parameters (QPs) for texture and depth
encoding. It can be observed that there still exist artifacts even
in the image synthesized from original texture and original
depth. Moreover, when both the warping distortion and the
texture coding distortion are encountered, the quality of the
synthesized view is severely degraded.

In 3D HEVC, the measurement of the distortion from depth
coding is not only determined by depth map distortion between
the original and the reconstructed depth blocks Dd , but also
by the SVDC Ds . As such, the RD cost function is formulated
as [1]

min{J } where J = ηs Ds + ηd Dd + λR, (2)

where ηs and ηd are weighting factors, λ is the Lagrange
multiplier for mode decision and R is the depth coding
bit. Here, Dd can be obtained by the Sum of Squared

Fig. 2. Illustration of synthesized view distortion change [6].

Differences (SSD) between the original depth map Sd and
encoded depth map S̃d ,

Dd =
∑

(x,y)

Dd(x, y) =
∑

(x,y)

[Sd(x, y) − S̃d (x, y)]2. (3)

Ds can be calculated by the variation of a synthesized block
when the depth map is modified from original to distorted
values. More specifically, the definition of SVDC Ds [6] is
shown in Fig. 2, and it can be formulated by,

Ds =
∑

(x,y)

[Vc(x, y)−Vr (x, y)]2−
∑

(x,y)

[Vo(x, y)−Vr (x, y)]2,

(4)

where Vo is a synthesized view from depth maps consisting
of encoded depth data in already encoded blocks and original
depth data in the to-be-encoded block, Vc is a synthesized
view from the depth map containing the distorted depth data
for the current block, and Vr is the reference synthesized view
rendered from the original texture and depth.

It is worth mentioning that in the real application scenario
the image at the virtual viewpoint is not always available
in the case of MVD coding. Instead, the image synthe-
sized from original texture and depth is used for reference.
However, artifacts may be inevitably introduced, as shown
in Fig. 1(c), and this may make the RDO process less efficient.
In view of this, we aim at improving the quality of the
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Fig. 3. Proposed framework of the CNN based synthesized view quality enhancement in 3D video coding.

reference synthesized image from the perspective of approach-
ing the captured view as the reference with CNN. Accord-
ingly, new Lagrange multiplier adaptation is mandatory while
applying this reference enhancement to 3D-HEVC, since the
distortion Ds has been changed. Otherwise, the RD perfor-
mance may not be optimal. In addition, from the experimental
results shown in Fig. 1(f), it can be found that the warp-
ing distortion and coding distortion make the quality of the
final synthesized view bad. A post-processing method is also
needed to eliminate these distortions.

III. PROPOSED CNN BASED SYNTHESIZED VIEW

QUALITY ENHANCEMENT IN 3D HEVC

According to the above analysis, a CNN based synthesized
view quality enhancement method is presented in this paper to
eliminate the artifacts in the synthesized view. The proposed
framework is illustrated in Fig. 3, and the proposed schemes
are highlighted, including CNN based reference synthe-
sized view enhancement, Lagrange multiplier adaptation and
CNN based post-processing.

A. CNN Based Reference Synthesized View Enhancement

As discussed in Section II, the synthesized image from
original texture and original depth is regarded as Vr to measure
the depth coding distortion in VSO. The inevitably introduced
artifacts in Vr motivates us to further improve its quality.
Let Y denote the ground truth which is captured by camera,
the optimal filter that aims to restore Vr to the perfect quality
image Y can be obtained as follows,

�∗
n = arg min

�n

‖Y − Vn‖2, Vn = �n(Vr , Ln, Rn|�n), (5)

where Vn is the enhanced result from Vr , �n is the filtering
parameter, and �n is a filtering function. Due to the mecha-
nism of view synthesis [2], the pristine texture images of left
and right reference viewpoints, Ln and Rn , are introduced as
the inter-view information. The wiener filter, which has been
widely used in video coding, can be regarded as an instance
of �n . However, the parameter �n cannot be generally applied
to a wide range of sequences, because it relays on the content
of the frame.

Therefore, a more sophisticated filtering algorithm is
desired. Inspired by the image denoising [16] with

a CNN model, we propose to enhance Vr by a CNN model
due to its substantial performance improvement in many signal
processing tasks. Moreover, for the learning based approach,
the benefit is that it can learn the features adaptively with
large amounts of training data. In Eq. (5), �n is regarded
as a CNN model, and �n is the whole parameter of CNN,
including weight and bias. As such, we can have the following
conclusion according to [16],

‖Y − Vn‖2 < ‖Y − Vr‖2. (6)

This indicates that Vn is closer to the ground truth Y than Vr .
In this manner, based on the inspiration that better reference
in distortion calculation will lead to better RD optimization,
the SVDC in the Eq. (4) is redefined as

Dn =
∑

(x,y)

[Vc(x, y)−Vn(x, y)]2−
∑

(x,y)

[Vo(x, y)−Vn(x, y)]2.

(7)

In 3D video system, the number and the position of synthe-
sized views are not available in the encoding process. As such,
the positions of synthesized views are always fixed, and the
assumption of 3 synthesized views is typically adopted in
the VSO process. In other words, three synthesized views
with the same interval will be generated by the associated
depth (to be encoded), and the VSD is the average value of
the differences between the generated synthesized views and
reference synthesized views. Different from traditional filters,
the CNN model for enhancing reference synthesized view can
be used for any given sequences, not just for a specific one.
In addition, the position of synthesized view is not limited any
more. It means that it is applicable to cross synthesized view
case.

B. Lagrange Multiplier Adaptation in 3D HEVC

Due to the fact that reference synthesized view has been
enhanced in Section III-A, the trade-off between synthesized
view distortion and the coding bit in the RD cost function
should be further adjusted. In [31], since various pattern modes
were included for video coding, the Lagrange multiplier was
adjusted for better coding performance. As the pattern modes
only require fewer bits when compared with other modes,
the adjusted Lagrange multiplier suggested by [31] signifies
less importance in bits compared to the distortion, which is
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Fig. 4. The relationship between Dn and Ds under different QP settings. (a) (Q Pt , Q Pd ) = (27, 36), ω = 0.9828; (b) (Q Pt , Q Pd ) = (30, 39), ω = 0.9609;
(c) (Q Pt , Q Pd ) = (32, 41), ω = 0.9555; (d) (Q Pt , Q Pd ) = (35, 42), ω = 0.9537; (e) (Q Pt , Q Pd ) = (37, 43), ω = 0.9534; (f) (Q Pt , Q Pd ) = (40, 45),
ω = 0.9457; (g) (Q Pt , Q Pd ) = (42, 46), ω = 0.9439; (h) (Q Pt , Q Pd ) = (45, 49), ω = 0.9285.

able to maintain the similar quality. This motivates us to derive
the Lagrange multiplier accordingly,

min{J } where J = ηs Dn + ηd Dd + λnew R, (8)

where λnew is the new Lagrange multiplier when the distortion
Dn is adopted. To derive λnew , the relationship of Dn and Ds

is firstly analyzed. According to Eqs. (4) and (7), we build the
relationship between Dn and Ds with a parameter of ω,

Dn

Ds
=

∑
(x,y) M(x, y)[Vc(x, y)+Vo(x, y)−2Vn(x, y)]

∑
(x,y) M(x, y)[Vc(x, y)+Vo(x, y)−2Vr (x, y)] = ω,

(9)

where,

M(x, y) = Vc(x, y) − Vo(x, y). (10)

In particular, the experiments are also conducted. The rela-
tionship between Dn and Ds is shown in Fig. 4, in which
the data can be collected from the sequences of Kendo,
Lovebird1, Pantomime, Poznan_Hall2 and Poznan_Carpark.
For simplicity, the relationship is fitted in a linear way to derive
λnew in global. The fitting accuracies reach 0.9744, 0.9690,
0.9743, 0.9881, 0.9723, 0.9793, 0.9700 and 0.9977 under
(Q Pt ,Q Pd ) of (27, 36), (30, 39), (32, 41), (35, 42), (37, 43),
(40, 45), (42, 46), and (45, 49) for texture and depth coding,
respectively. The QP pairs for texture and depth coding are
recommended by the Common Test Conditions (CTC) [32].

With the relationship between Dn and Ds in Eq. (9),
the new Lagrange multiplier λnew can be achieved by taking
the derivative of Eq. (8) with respect to R and setting to 0,

λnew = −∂(ηs Dn + ηd Dd )

∂ R
= −∂(ηsωDs + ηd Dd )

∂ R

= −[ωηs
∂ Ds

∂ R
+ ηd

∂ Dd

∂ R
]. (11)

Similarly, the derivative of Eq. (2) with respect to R is
calculated and set to 0,

λ = −∂(ηs Ds + ηd Dd )

∂ R
= −[ηs

∂ Ds

∂ R
+ ηd

∂ Dd

∂ R
]. (12)

From Eqs. (11) and (12), it can be observed that the only
difference lies in the parameter of ω.

In [7], the VSD was estimated by depth map fidelity and
horizontal gradient of texture of reference viewpoint. For
simplicity, here Ds is represented by VSD to obtain the
relationship between λ and λnew ,

Ds ≈
∑

(x,y)

1

4
α2Dd (x, y)(∇T(x,y))

2, (13)

where α is a constant when the reference and virtual view-
points are selected. Dd(x, y) can be calculated by Eq.(3), and
∇T is the gradient of the encoded texture of reference view.
More specifically, α is calculated by [7]

α = f L

255
(

1

Znear
− 1

Z f ar
), (14)

where f is the focal length, L is the distance between
reference and virtual viewpoints, Znear and Z f ar are the
nearest and farthest depth value, respectively. The horizontal
gradient ∇T(x,y) is calculated as [7]

∇T(x,y) = |S̃t (x, y)−S̃t (x − 1, y)|+|S̃t (x, y)−S̃t (x + 1, y)|,
(15)

where S̃t is the encoded texture of reference viewpoint.
Analogous to [30], with the relationship between Ds and Dd

in Eq. (9), Mathematical Expectation is applied to Eqs. (11)
and (12), then the new Lagrange multiplier λnew can be
achieved as follows,

λnew = λ
ωμ + ηd

μ + ηd
, (16)
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Fig. 5. Proposed architecture of CNN model.

where μ can be represented as

μ = 1

W × H

∑

(x,y)

1

4
ηsα

2(∇T(x,y))
2. (17)

Here W and H indicate the width and height of the block.
According to Eq. (16), it can be found that the new

Lagrange multiplier λnew equals to the original λ if ω is 1.
The parameters of ηd , ηs , W , H , and α can be regarded as
constants. The horizontal gradient ∇T(x,y) plays an important
role in the relationship between λnew and λ. If the value of
∇T(x,y) is very large, μ will be much greater than ηd , then
λnew = ωλ. While if the value of ∇T(x,y) is approaching
zero, μ will be much less than ηd , then λnew = λ. Here,
the calculation of ∇T(x,y) can be directly extracted from the
3D HEVC encoder because of the calculation of VSD, leading
to ignorable computational complexity.

C. CNN Based Post-Processing

In analogies to reference synthesized view enhancement,
the post-processing of the synthesized view at the decoder
side is also able to reduce the artifacts. The difference lies
in that mixed distortions with both warping distortion and
compression distortion are introduced in the synthesized view
at the decoder side. As such, different CNN training strategies
should be adopted for the post-processing process.

Here, the CNN model is used for post-processing of the
synthesized view. Suppose Ve is the synthesized result from
encoded texture and encoded depth, and the synthesized result
after post-processing Vp can be represented as

Vp = �p(Ve, Le, Re|�p), (18)

where �p is the parameter of CNN and �p is the CNN model
for post-processing. Different from reference synthesized view
enhancement, the original texture image of reference view-
point is unavailable, and Le and Re represent the encoded
texture images of left and right reference viewpoints. The
parameter of CNN is achieved as follows,

�∗
p = arg min

�p

‖Y − Vp‖2, (19)

where Y is the ground truth captured by camera. In this
paper, different CNN models for different distortion levels are
trained, which will be discussed in Section IV.

IV. CONVOLUTIONAL NEURAL NETWORKS TRAINING

The architecture of proposed CNN model is designed by
four convolutional layers, as shown in Fig. 5. In the first layer,
there are three images of input and 64 feature maps of output
with filtering window size of 3 × 3. Due to the mechanism
of DIBR, the left and right reference views are added as
input to the CNN model for providing useful pixel information
from inter-view domain. The input I includes the distorted
synthesized image V as well as the texture images of the left
and right reference viewpoints, L and R, i.e., I = {L, V, R}.
The outputs are non-linear mapped by activation function of
Rectified Linear Unit (ReLU). As such, the processing of the
first layer is represented by,

�1(I|W1, B1) = ReLU(W1 ∗ f (I) + B1), (20)

where W1 and B1 are the weight and bias in the first layer. The
symbol “*” indicates convolution operation, and the activation
function is given by,

ReLU(x) = max(0, x), (21)

where max(·) returns the maximum value. Moreover, I is
normalized to [0, 1] as follows,

f (I) = I/(2n − 1), (22)

where n represents the bit-depth of I.
For the second and third layers, the inputs are the outputs

of prior layers, and the outputs are 64 feature maps after batch
normalization [33] and ReLU. Again, the filtering window
sizes of these two layers are both set as 3×3, and the process
can be formulated as follows,

�i (I|Wi , Bi )= ReLU(B N(Wi ∗ �i−1(I|Wi−1, Bi−1) + Bi )),

(23)

where Wi and Bi are the weight and bias in the second and
third layers, (i ∈ {2, 3}). B N(·) indicates the operation of
batch normalization.

In contrast with the other layers, in the last layer only the
convolution operation is performed without batch normaliza-
tion and ReLU. Moreover, the residual learning is considered,
and the synthesized image with distortion is added to the
output from the last layer as the final enhanced view. The
process of the last layer is formulated as

�4(I|W4, B4) = W4 ∗ �3(I|W3, B3) + B4 + f (V), (24)
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TABLE I

SEQUENCES FOR TRAINING AND TESTING

where W4 and B4 are the weight and bias in the fourth layers.
We also clip the final pixel value into the valid range as follows

�(I|�) = min(max(0, f −1(�4(I|W4, B4))), 2n − 1), (25)

where � denotes the whole parameter set of CNN, � is
the CNN model, min(·) returns the minimum value, and the
function f −1(I) is the inverse operation of f (I),

f −1(I) = I × (2n − 1). (26)

The objective of training is to minimize MSE between
ground truth and the predicted one using the Stochastic Gra-
dient Descent (SGD) with error backpropagation algorithm,

	(�) = 1

N

N∑

m=1

‖�4(Im |W4, B4) − f (Ym)‖2, (27)

where N is the number of batch sizes.
As described in Section III, the synthesized view qual-

ity enhancement is implemented into both VSO and post-
processing modules. For the training data of CNN based
reference synthesized view enhancement in VSO, the images
are synthesized by the original texture and depth. As such,
one synthesized image (Vr ), two original texture images of left
and right reference viewpoints (Ln, Rn) and associated ground
truth are formed as a training pair. For the training data of
CNN based post-processing, the texture and depth videos of
reference viewpoints are jointly encoded by the 3D HEVC
Test Model version 16.2 (HTM 16.2) [34] under four QP
pairs of (Q Pt ,Q Pd ), (30, 39), (35, 42), (40, 45), and (45, 49),
following the CTC [32]. Four distorted levels of synthesized
videos are generated by the encoded texture and depth. One
synthesized image (Ve), two encoded texture images of left
and right reference viewpoints (Le, Re) and associated ground
truth are incorporated as a training pair. For each distortion
level, the CNN model is trained individually.

As shown in Table I, ten multi-view sequences with different
contents and resolutions are adopted. The synthesized images
of training and testing are generated by the 1D-FAST view
synthesis software [34] and the ground truth images are
physically captured at the same viewpoint. More specifically,
two sets are defined for cross-validation, i.e., Set 1 and Set 2.
In each set, five multi-view sequences are used for training
and the remaining ones are used for testing. Ten frames
(the 1th , 11th, …, and 91th frames) of each training sequence
are selected. We set the patch size as 32 × 32 with the stride

Fig. 6. Illustration of the training loss converge for the synthe-
sized view quality improvement (reference synthesized view enhancement).
(a) Training Set1; (b) Training Set2.

of 16, and the batch size is set to be 128. Therefore, in total
there are 1662 batches with 212736 patches. The Tensorflow
package is utilized for CNN training on Tesla K80 GPU with
100 epoches (1662 × 100 = 166200 iterations). The learning
rate is set as 1 × 10−4. It takes about 5 hours to train each
CNN model. The training loss converge curves are shown
in Figs. 6 and 7. It can be found that when the iteration is
greater than 15×104, the training of CNN models all converge.

V. EXPERIMENTAL RESULTS AND ANALYSES

In this section, experiments are conducted on the platform of
HTM 16.2 [34], based on which the proposed CNN model has
been implemented to improve the quality of the synthesized
view. The CNN based post-processing is also implemented
in the 1D-FAST view synthesis software [34]. The multi-view
sequences, as listed in Table I, are encoded with four QP pairs
of (Q Pt ,Q Pd ) for texture and depth, including (30, 39),
(35, 42), (40, 45) and (45, 49), under CTC [32]. The VSO
and VSD are both enabled under default configuration. All the
encoding experiments are performed on the computer equipped
with the Intel Core i7-4790 CPU @ 3.60GHz, 8GB memory,
Windows 7 Enterprise 64-bit operating system. The original
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Fig. 7. Illustration of the training loss converge for the synthesized view quality improvement (post-processing). (a) (Q Pt , Q Pd ) = (30, 39), training Set1;
(b) (Q Pt ,Q Pd ) = (35, 42), training Set1; (c) (Q Pt , Q Pd ) = (40, 45), training Set1; (d) (Q Pt ,Q Pd ) = (45, 49), training Set1; (e) (Q Pt , Q Pd ) = (30, 39),
training Set2; (f) (Q Pt , Q Pd ) = (35, 42), training Set2; (g) (Q Pt , Q Pd ) = (40, 45), training Set2; (h) (Q Pt , Q Pd ) = (45, 49), training Set2.

HTM 16.2 is utilized as the anchor for RD performance
comparison, in which the baseline model with synthesized
view Vr has been equipped. The values of PSNR and Structural
SIMilarity (SSIM) index [35] are both calculated between
synthesized image and the original one captured by camera
for luma component. The RD performance is measured by
Bjøntegaard Delta Bit Rate (BD-BR) [36], and a positive
value implies the RD performance degradation and vice versa.
It should be noted that the CNN models in the proposed
method are not compressed and sent to decoder when they are
implemented in the 3D HEVC codec. The CNN models used
for enhancing reference synthesis view and post-processing
are embedded in the encoder and decoder, respectively.

A. CNN Model Validation for Intermediate Synthesized View

Firstly, the proposed CNN model for synthesized view qual-
ity enhancement is validated by the comparisons with the state-
of-the-art compression artifact reduction and image denoising
CNN models, i.e., AR-CNN [15] and VR-CNN [18]. Here the
input texture and depth for view synthesis are not compressed.
The detailed architectures of AR-CNN and VR-CNN can be
found in [15] and [18]. AR-CNN is proposed to reduce the
compression distortion from JPEG codec, while VR-CNN is
used as an in-loop filter to replace the de-blocking and SAO in
HEVC intra coding. Compared with AR-CNN and VR-CNN,
the proposed CNN model has more input information from
left and right reference views, and the kernel sizes of different
convolutional layers are always set as 3 × 3. The multi-view
sequences, listed in Table I, are adopted for testing. The results
are shown in Tables II and III, respectively. In Table II, it can

be found that the proposed scheme achieves better quality
improvement results compared to AR-CNN and VR-CNN on
average. Similar results can be observed in Table III in terms
of SSIM. For the special video sequences, i.e., Pantomime
and Champagne_tower, there is no texture information in

TABLE II

PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART

CNN MODELS IN TERMS OF PSNR [UNIT: dB]

TABLE III

PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART

CNN MODELS IN TERMS OF SSIM

the background. The proposed CNN does not perform better
than VR-CNN in this case. The reason is that the proposed
CNN is equipped with fixed kernel of convolutional layers
while VR-CNN has various kernels of convolutional lay-
ers. In addition, the visual quality comparisons are provided
in Figs. 8 and 9, where it can be observed that the artifacts
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Fig. 8. Visual quality comparisons for the synthesized view (Balloons). (a) The 1st frame of Balloons sequence; (b) The image captured by camera;
(c) The original synthesized image; (d) The synthesized image (processed by AR-CNN); (e) The synthesized image (processed by VR-CNN); (f) The
synthesized image processed by the proposed CNN.

Fig. 9. Visual quality comparisons for the synthesized view (Lovebird1). (a) The 4th frame of Lovebird1 sequence; (b) The image captured by camera;
(c) The original synthesized image; (d) The synthesized image (processed by AR-CNN); (e) The synthesized image (processed by VR-CNN); (f) The synthesized
image processed by the proposed CNN.

in the synthesized view from original texture and original
depth can be significantly eliminated by the proposed CNN.
Moreover, although the synthesized view quality have been
improved by AR-CNN and VR-CNN, strict observers may find
that certain parts of the synthesized view are still distorted,
and the visual quality of the synthesized view processed by
the proposed CNN is much better than those processed by
AR-CNN and VR-CNN. For example, there are some bound-
ary artifacts below balloons in Figs. 8(c), (d) and (e), and to
the left of the girl’s head in Figs. 9(c), (d) and (e). By contrast,
these artifacts are not apparent in Figs. 8(f) and 9(f).

Secondly, the CNN model is also evaluated and compared
with AR-CNN and VR-CNN as the module of post-processing.
In particular, they are re-trained with the same training data
as the proposed CNN model. More specifically, the train-
ing data are obtained by the distorted texture and depth
under (Q Pt ,Q Pd ) of (30, 39). The results of Balloons and
Poznan_Carpark sequences are shown in Figs. 10(a) and (b),
from which it can be found that all these CNN models
can improve the quality of synthesized image. Moreover,
the proposed CNN model has better performance gain than
AR-CNN and VR-CNN.

B. CNN Model Validation for Cross View Case

To evaluate that the proposed CNN model is applicable to
cross synthesized view case, more experiments are conducted
for reference synthesized view enhancement. The synthesized
view positions are illustrated by BookArrival sequence with
views from 06 to 10 in Fig. 11. Views 06 and 10 are
reference views while views 07 to 09 are synthesized views

Fig. 10. Performance comparisons with the state-of-the-art CNN models in
terms of PSNR, where the image was synthesized by encoded texture and
depth under (Q Pt , Q Pd ) = (30, 39). (a) Balloons; (b) Poznan_Carpark.

at positions 0.25 to 0.75. As we know, with two reference
views, the synthesized views at any positions between them
can be generated. However, we do not know where the
synthesized view is at the encoder side in practice. Three
fixed synthesized views (0.25, 0.50, and 0.75) are adopted for
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Fig. 11. Synthesized view position illustration.

TABLE IV

PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART CNN MODELS IN TERMS OF PSNR FOR CROSS VIEW CASE [UNIT: dB]

TABLE V

PERFORMANCE EVALUATION OF INDIVIDUAL ALGORITHMS

(BDBR IN TERMS OF PSNR) [UNIT: %]

validation in the 3D HEVC encoder. In this paper, only the
intermediate synthesized view is considered for CNN model
training. The experimental results of cross synthesized view
case are shown in Table IV. It can be found that the proposed
CNN model still achieves 0.32dB and 0.29dB gain on average
when synthesized view positions are 0.25 and 0.75, and it is
also better than that of AR-CNN and VR-CNN on average.
It indicates that although the proposed CNN model is trained
from intermediate view, it can be applied to cross synthesized
view case as well.

C. Coding Performance of Individual Algorithm

Here, the performances of the proposed schemes are eval-
uated in terms of BD-BR under different metrics (PSNR and
SSIM). The results are shown in Tables V and VI. In Table V,
the schemes of RSVE and POST can reduce 16.31% and
24.53% bit rate on average under Set 1, and reduce 11.04%
and 15.80% bit rate on average under Set 2 in terms of PSNR.
In Table VI, the schemes of RSVE and POST can reduce
3.498% and 11.02% bit rate on average under Set 1, and reduce

1RSVE indicates CNN based Reference Synthesized View Enhancement
plus Lagrange multiplier adaption.

2POST indicates CNN based POST-processing.

TABLE VI

PERFORMANCE EVALUATION OF INDIVIDUAL ALGORITHMS

(BDBR IN TERMS OF SSIM) [UNIT: %]

2.108% and 7.468% bit rate on average under Set 2 in terms
of SSIM. From these results, it can be found that the post-
processing process has more contributions of the performance
improvement than encoder optimization, and there is more bit
rate reduction in terms of PSNR than that of SSIM.

Moreover, for the encoder optimization, the sequence
Champagne_Tower has the most significant bit rate reduction,
which reaches −43.47% in terms of PSNR. For the post-
processing process, the sequences Newspaper and Cham-
pagne_Tower have the most significant bit rate reduction. For
the sequence of Champagne_Tower, most of the background is
low illumination and relatively smooth. Moreover, the quality
of the synthesized view from the pristine texture and depth is
relatively lower than the other sequences (27.59dB), as shown
in Table II. This provides more room for the quality improve-
ment of the synthesized view, such that better performance
improvement can be achieved.

D. Coding Performance Comparison With the
State-of-the-Art Algorithm

In this subsection, we compare the proposed scheme with
the traditional wiener filter based quality enhancement scheme
Yuan et al’s method [13]. In Yuan et al.’s method, the wiener
filtering parameters for post-processing are derived in the
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TABLE VII

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART ALGORITHMS

encoder and signalled in the bitstream to improve the quality of
synthesized image. However, the position of virtual viewpoint
is required to be defined before filtering parameters calcula-
tion, which is impractical in real-world system. The proposed
method can address these problems because the trained CNN
models can be employed to any sequences, and the position
of virtual viewpoint is not limited, which means that it is
applicable to cross synthesized view case. In the experiment,
three default interpolated viewpoints (0.25, 0.5, and 0.75)
are adopted to evaluate the performance at different positions
illustrated in Fig. 11, and the results are shown in Table VII.

For Yuan et al.’s method, it can achieve 17.4% and 8.99%
bit rate reduction under Sets 1 and 2 in terms of PSNR, and
achieve 12.7% and 7.96% bit rate reduction under Sets 1 and 2
in terms of SSIM. Moreover, it is observed that the bit
rate of Yuan et al.’s method increases when compared with
HTM 16.2 due to the wiener filtering parameters signalled in
the bitstream, which results in significant bit rate overhead.
The proposed method can reduce 30.9% and 20.9% bit rate
under Sets 1 and 2 in terms of PSNR, and reduce 13.4%
and 10.1% bit rate under Sets 1 and 2 in terms of SSIM.

The sequence of Champagne_Tower has the most significant
bit rate reduction, which reaches 60.8% and 22.1% in terms
of PSNR and SSIM.

E. Complexity of Proposed CNN Model in 3D Video System
In this subsection, the computational complexity of the

3D HEVC encoder and the 1D-FAST view synthesis software
equipped with the proposed CNN models are recorded and
compared with the original HTM 16.2 and 1D-FAST view
synthesis software. The computational complexity increment
is measured by,


T = TPro − TOrg

TOrg
× 100%, (28)

where TPro and TOrg indicate the running time of proposed
method and the original codec, respectively. The results are
shown in Table VIII. According to the results, it can be
observed that the computational complexity increases 294%
and 369% on average for the module of encoder optimization
under Sets 1 and 2, respectively. For the post-processing
with the proposed CNN model, the computational complex-
ity increases significantly, i.e., 1711% and 2098% under
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TABLE VIII

COMPLEXITY COMPARISON WITH HTM 16.2

TABLE IX

CROSS-VALIDATION OF CNN MODELS IN TERMS OF PSNR [UNIT: dB]

Sets 1 and 2, respectively. Most of computation time is spend
on the convolution operation in CNN model. It should be
noted that these encoding and view synthesis experiments are
carried out on the CPU platform instead of GPU. Although
the proposed method equipped with CNN models is time
consuming, this is the first attempt of applying CNN to
optimize the 3D HEVC and it achieves better RD performance
than the traditional method.

F. Cross-Validation of CNNs Under Different QP Settings

In this subsection, we conduct an experiment to further
investigate whether the CNN models trained under different
QP settings can be shared in the post-processing module.
In this paper, there are four CNN models for post-processing
based on four QP pairs of (Q Pt ,Q Pd ) from (30, 39) to
(45, 49). For simplicity, these CNN models are denoted as
CNN1 to CNN4, and the training of them has been mentioned
in Section IV. The average results of Sets 1 and 2 are shown
in Table IX. From these results, we can observe that these
CNN models are able to be shared to some extent because
all of them can bring performance gains when compared with
the anchor. Moreover, it is not surprising to see that these
synthesized images which have been processed by the specific
CNN model trained with the corresponding QP value can
obtain the best performance, and the quality decreases with
the QP distance between training and testing.

VI. CONCLUSION

In this paper, we present a CNN based synthesized view
quality enhancement method for 3D HEVC to further improve
the coding efficiency, where the proposed CNN models are
incorporated into the 3D HEVC encoding and post-processing
process. The novelty of this paper lies in that the learning
based restoration model is applied to push the synthesized
view towards the physically captured one, which benefits both
the encoder and post-processing process in 3D video coding.
Accordingly, the new Lagrange multiplier is further adjusted

to adapt to such synthesized view quality improvement. Com-
pared with the state-of-the-art CNN models, the proposed
scheme achieves better performance improvement, and sig-
nificantly improves the 3D video coding performance. In the
future work, the computational complexity issue will be further
investigated.
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